Showing posts with label XFP. Show all posts
Showing posts with label XFP. Show all posts

Tuesday, October 25, 2016

Introduction to 10GBASE-LR and 10GBASE-LRM SFP+

Although the 40G/100G optical modules are on the very top trend for enterprise and data center for the interconnection, 10G transceiver modules are still in great demand. There are several types of 10G optical transceiver modules available for sale including the XENPAK, X2, XFP, small form-factor pluggable plus (SFP+) transceiver, of which 10g SFP transceiver (due to its small size and low power) is the most popular type for 10G network. According to the 10 Gigabit Ethernet standard, SFP+ transceiver can be classified into many categories: 10GBASE-SR SFP+, 10GBASE-LR SFP+, 10GBASE-ER SFP+, and 10GBASE-LRM SFP+. This article will focus on the introduction of the 10GBASE-LR SFP+ and 10GBASE-LRM SFP+ transceivers.
10GBASE-LR SFP+
10GBase-LR can support up to 10km over single-mode fiber and uses 1310nm lasers. There is no minimum distance for LR, either, therefore it is suitable for short connections over single mode fiber too. The Cisco 10GBASE-LR module supports a link length of 10 kilometers on standard single-mode fiber (SMF, G.652). FS.COM compatible 10GBASE-LR SFP+ transceiver possesses the same function as the original one with a much lower price than Amazon and ebay. The following image shows a Cisco Compatible SFP-10G-LR SFP+.
cisco-sfp-10g-lr-compatible-10gbase-lr-sfp
10GBASE-LRM SFP+
10GBASE-LRM still uses the 1310nm lasers, but it can only reach up to 220m over standard multimode fibers. The 10GBASE-LRM can be packaged in XFP and SFP+ form factors. FS.COM Cisco SFP-10G-LRM Compatible 10GBASE-LRM SFP+ supports link lengths of 220m on standard Fiber Distributed Data Interface (FDDI) grade multimode fiber (OM3/OM4). Every transceiver is individually tested on a full range of Cisco equipment and passed FS.COM’s testing with 100% compatibility. The following image shows a Cisco Compatible SFP-10G-LRM SFP+.
cisco-sfp-10g-lrm-compatible-10gbase-lrm-sfp
Besides the Cisco SFP-10G-LRM, there are a new type of the 10G SFP+ module for multimode fibers—SFP-10G-LRM2. It is a type of SFP+ transceivers compatible with the 10GBASE-LRM standard. SFP-10G-LRM2 can reach up to 2km over standard multimode fiber.
Contrast Between 10GBASE-LR and 10GBASE-LRM SFP+
At the first glimpse of the two terms—10GBase-LR and 10GBase-LRM, people usually have the misconception that they are similar with each other. In fact, 10GBase-LR and 10GBase-LRM meets different demands just as described in the above article. SFP-10G-LR optics (compatible with 10GBase-LR) supports a link length of 10km on standard single-mode fiber (SMF). SFP-10G-LRM (compatible with 10GBase-LRM) optics supports link lengths of 220m on standard Fiber Distributed Data Interface (FDDI) grade multimode fiber (MMF). When you use the OM1 or OM2 fibers connected with the 10GBase-LRM module, to make sure that specifications are met over FDDI-grade, the transmitter should be coupled through a mode conditioning patch cord. But it is fine when you use over the OM3 and OM4 fibers.
Conclusion
10G SFP+ transceiver is widely used to support communication standards including synchronous optical networking (SONET)/synchronous digital hierarchy (SDH), 10 Gigabit Ethernet and fibre channel. Both 10GBASE-LR and 10GBASE-LRM SFP+ wins its own place on the market. They cannot substitute for each other! FS.COM offers various compatible SFP+ transceivers for data centers, enterprise wiring closets, and service provider transport applications. 10G-SFP-SR, 10G-SFP-LR, 10G-SFP-LRM, 10G-SFP-LRM2, 10G-SFP-ER, 10G-SFP-ZR are all available in FS.COM. All of our SFP+ transceivers are tested and fully compatible with major brands like Cisco, HP, Juniper, Brocade and Finisar. For more information about 10G SFP+ modules, please visit fs.com.

Monday, April 25, 2016

Knowing the Features of Pluggable Optical Modules and Optical Patch Cables

Pluggable Optic modules are typically used in systems to leverage the rapid long data transmission distance of which fiber optic networks are capable. To realize the maximum distance, network designers must ensure that the integrating optical networks are robust and aware of the knowledge of the whole system—the types of optical modules and the electrical and optical standards for which the optical module is designed, and the host transceiver features that are required to transmit and receive data through an optical system. It seems to be troublesome process. So today’s article is intended to help designers overview the available options in the pluggable optical module market, along with the optical patch cables that must be considered when making design choices.
Pluggable Optical Modules Overview
When a designer looks at implementing an optical interface, several choices need to be made based on the protocol and application. Take optical transceiver module as an example, to select a suitable transceiver module, you need to take the following factors into consideration—types of optical modules, different form factors, features, electrical and optical specifications, and lane width, etc. Figure 1 shows several pluggable optic transceivers. Can you recognize them?
pluggable optic tranceivers
Optics have a long history of use in the telecommunications sector. As a result, there is a wide variety of form factors that are available for optical modules. To simplify the discussion, this article focuses on the current set of optical modules utilized for 10G, 40G, and 100G Ethernet, though many of the topics translate directly to OTN or other standards. These Ethernet rates can be supported by a variety of electrical lane widths (usually one, four, or ten lanes), which in turn determine the electrical line rates. For example, either four lanes of 3.125 Gb/s or a single lane of 10.3125 Gb/s can support 10G Ethernet; similarly, either ten lanes of 10.3125 Gb/s or four lanes 25.78125 Gb/s can support 100G Ethernet. The current crop of high-end optical modules leverages a base rate of 10.3125 Gb/s, for 10G, 40G, and 100G Ethernet in one, four, or ten lanes. Popular optical modules are available that support each of these widths at this rate: SFP+ or XFP for a single lane, QSFP+ for four lanes, and CFP for ten lanes. Take XFP-10GLR-OC192SR as an example, it is XFP compatible 10GBASE-LR/LW transceiver with a maximum data rate of 10.3125Gbps over single lane. Module type is constrained only by its form factor and pinout, supporting a variety of electrical and optical standards. This large field of choice adds to the complexity of selecting the correct parts for design into a system.
Impact of Optical Fiber on a System
One common difference between modules is the length and type of fiber a module can drive. SFP+ makes itself a good example for examining the options. 10G Ethernet defines a number of optical interfaces (SR, LR, LRM, and ER) along with other industry adopted standards (ZR and DWM) that specify the optical wavelength and the length and type of optical fiber that can be supported. Each element of this selection has a different impact on the link performance. For example, 10GBASE-SR (e.g. SFP-10GB-SR) uses an 850nm wavelength and can support up to 300m of 50µm multimode fiber while 10GBASE-LR uses a 1300nm wavelength and can support 10 km of single mode fiber.
Fiber Optic Patch Cable Overview
Choose a fiber optical cable is largely on the selection of multimode and single-mode fiber. The differences between multimode fiber and single-mode fiber are important. Single-mode fiber consists of a single strand of fiber that the data is transmitted across. Multimode fiber is composed of multiple strands of fiber bundled together, where light can pass across each strand. In either case, an effect known as dispersion can impact the fidelity of the transmit signal. As the signal passes through the fiber, the distribution of wavelengths of light that contain signal content are interacted with in slightly different ways, some wavelengths experiencing more delay or varying degrees of attenuation. The impact of this optical dispersion to the waveform is distinctly different from how copper impacts electrical signals. As a result, high levels of optical dispersion require special circuitry to compensate for, typically in the form of a feed-forward equalizer (FFE) in conjunction with the standard DFE and CTLE structures used for electrical channels. Figure 2 shows LC multimode fiber optic patch cable plugging in adapter panel.
lc multimode-fiber-patch-cable
While both single-mode and multimode fiber introduce some dispersion, the single-mode has the advantage that very little dispersion occurs per unit length compared to multimode fiber, leaving loss as the primary contributor to signal degradation at the far end of the link. The amount of dispersion introduced in multimode fiber varies depending on the laser wavelength. At 850 nm (used for 10GBASE-SR), very little optical dispersion is introduced over the maximum 300m of fiber. Comparatively, at 1300 nm (used for 10GBASE-LRM), far more dispersion is introduced—enough that it needs to be compensated for after the signal is translated into the electrical domain.
Conclusion
Fiber optics is becoming a standard part of today's high-bandwidth landscape. Designers using optics are faced with a wide variety of choices of implementation rates, form factors, optical standards, electrical standards and the trade-offs between them. Knowing how the features of a given optical module impact the rest of the system is an advantage that cannot be ignored. Fiberstore is dedicated to supporting a wide variety of optical interfaces at today's 10Gb/s standards and beyond. We provide pluggable optical modules from 1G SFP modules to 100G CFP2 modules, as well as offering a full range of optical cables. For more information on how to implement optical interfaces, you are welcome to contact us.

Thursday, April 14, 2016

Juniper 10-Gigabit Ethernet Optical Transceivers – EX-SFP-10GE-SR and XFP-10G-L-OC192-SR1

From the emergence of 10G Ethernet, 10G optical transceivers have been developed along the way to meet the increasing requirement for high performance. From the old XENPAK to X2, XFP, SFP+, optical transceiver becomes smaller, more affordable and less power hungry, which might be a good news for 10G deployment. But with so many options available on the market, it is difficult for users to select a matching transceiver for their given application and hardware.
In fact, as the first 10G optical transceiver, XENPAK gradually exits the stage. Few people today would choose to use XENPAK and X2 for 10G connectivity. At the same time, XFP and SFP+ are offered by many vendors with different specifications. Of which Juniper XFP and SFP+ win a large market share. Today’s post will go on to talk about Juniper XFP and SFP+ transceiver module.
SFP+ Transceiver
The enhanced small form-factor pluggable (SFP+) is an upgraded version of the former SFP. SFP+, compared with the XENPAK and X2, possesses more compact size with data rates up to 10 Gbit/s. And it can also support 8Gbps/10Gbps/16Gbps Fibre Channel, 10 Gigabit Ethernet and Optical Transport Network standard OTU2. The SFP+ product family includes cages, connectors, and copper cable assemblies. In addition, they have the ability to connect to a variety of different types of optical fiber and are highly flexible. That’s why they are so desirable to designers.
Juniper EX-SFP-10GE-SR
Take Juniper EX-SFP-10GE-SR as an example, this SFP+ transceiver module is designed for use with Juniper network equipment and is fully compatible with Juniper switch and routers. This Juniper EX-SFP-10GE-SR is 10GBASE-SR SFP+ that operates over a wavelength of 850nm. It combines quality with low cost and gives you an ideal alternative except for the high price transceivers. Here are some key features of the optical transceiver.
EX-SFP-10GE-SR
Feature
  • Functionally identical to Juniper Networks EX-SFP-10GE-SR
  • LC ports designed for use with multimode fiber
  • Includes Digital Optical Monitoring (DOM)
  • 850nm wavelength signaling
  • Supports up to 300 meters of cabling
XFP Transceiver
XFP transceiver is a hot-pluggable and protocol-independent 10 Gbit/s optical transceiver designed to help drive cost and power consumption out of 10 Gbit/s optical networking applications. This particular XFP specification was developed by the XFP Multi-Source Agreement Group. XFP transceivers are capable of operating at wavelengths of 850 nm, 1310 nm, and 1550 nm at a single wavelength or through the use of dense wavelength-division multiplexing techniques. There are a variety of transceiver types available, but the most popular ones include: SR (850 nm and can transmit up to 300 m), LR, ER, and ZR. LR is 1310 nm and can transmit distances up to 10 km.
Juniper XFP-10G-L-OC192-SR1
XFP-10G-L-OC192-SR1 is Juniper 10GBASE-LR XFP transceiver. It operates at a wavelength of 1310nm with a link length of up to 10km links. ER is characterized by 1550 nm and can transmit distances of 40 km. ZR can transmit distances up to 80 km. Designers prefer to use XFP packaging because it has a smaller footprint than other devices. And this XFP-10G-L-OC192-SR1 is fully compatible with all Juniper series switches and modules which support XFP transceivers. The following are some detailed information about this product.
XFP-10G-L-OC192-SR1
Technical Performance
Module model: XFP
Device Type: Transceiver module
Interface (Bus) Type: Plug in module
Connectivity Technology: Wired
Application: 10GBASE SR1
Product working data rate: 10Gbps
Wavelength: 1310nm
Max Distance: 10km
Fiber Type: SMF
Connector: Duplex LC
DDM: With DDM
Operating Temperature: 0~70 °C
Compliant with MSA XFP Specification
3rd-party Optical Transceiver Recommendation
For your limited budget, 3rd-party optical modules may be good choice. Just remember to find a reliable vendor. Fiberstore has a large quantity in stock transceivers and can ship in very short time. You will find the cost-effective and high-quality Juniper XFP-10G-L-OC192-SR1 and EX-SFP-10GE-SR beyond your expectation. Additionally, customize optical transceivers to fit your specific requirements are available. Contact us today to save the time and cost by buying from us directly.

Monday, March 7, 2016

10G Connectivity – Comparing XFP With SFP+

Defined in 2002, XFP (10 Gigabit Small Form Factor Pluggable) is a hot-swappable and protocol-independent transceiver for 10G high-speed computer network and telecommunication links. Except for XFP, there are SFP and SFP+ transceivers available for 10G connectivity. These devices plug into a special port on a switch or other network device to convert to a copper or fiber interface. So what is the difference between them? The following passage will provide a satisfying solution to you.
SFP&SFP+&XFP
What Is XFP?
XFP is 10 Gigabit transceiver operating at wavelengths of 850nm, 1310nm or 1550nm. This module combine transmitter and receiver functions in one compact, flexible, and cost-effective package. The physical dimensions of the XFP transceiver are slightly larger than the original small form-factor pluggable transceiver (SFP). XFP transceiver modules are available with a variety of transmitter and receiver types including the SR, LR, ER and ZR. The maximum working distance of XFP SR is 300 meters. 10GBASE-LR XFP transceivers have a wavelength of 1310nm and a transmission distance up to 10 km. For example, XFP-10G-L-OC192-SR1 covers a distance of 10km with LC connectors. XFP-10GLR-OC192SR is Cisco XFP 10GBASE-LR/-LW operating at wavelength of 1310nm over singlemode fiber with a links length of 10km. Both 10GBASE-ER XFP and 10GBASE-ZR XFP modules have a wavelength of 1550nm, and the maximum transmission distance of 40km and 80km, respectively.
What Is SFP/SFP+?
SFP is most often used for Fast Ethernet of Gigabit Ethernet applications and can support speed up to 4.25Gbps. It interfaces a network device motherboard (for a switch, router, media converter or similar device) to a fiber optic or copper networking cable. It is specified by the SFP transceiver multi-source agreement. The standard SFP transceiver, SFP+ supports speeds of 10Gbps or higher over fiber. The SFP+ product family includes cages, connectors, and copper cable assemblies. It is also similar to the performance requirements of SFF-8431 and also supports 8G Fiber Channel and 10G Ethernet applications. Take 46C3447 as an example, it is 10GBASE-SR SFP+ that can support a distance of 300m over OM3 cable.
What’s the Difference Between XFP and SFP+?
First of all, both of them are 10G transceiver modules and can contact with other types of 10G modules. The primary difference between SFP+ and the slightly older XFP standard is that the SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes SFP+ smaller than XFP, enabling greater port density. Because of the smaller volume, SFP+ transfer signal modulation function, serial/deserializer, the MAC, clock and data recovery (CDR) and electronic dispersion compensation (EDC) function from the module to the Lord on the card. In addition, SFP+ compared to XFP, is a more compact factor package. The cost of SFP+ is also less than that to the XFP, X2 and XENPAK. It can connect with the same type of XFP, X2 and XENPAK as well. Therefore, SFP+ is more popular than XFP for 10G network.
Summary
10G optical transceivers are designed for 10G or 10Gbit/s data transmission applications including 10 Gigabit Ethernet, 10Gbit/s Fibre Channel, Synchronous optical networking. After years of development, there has been various different form factors and optics types introduced including XENPAK, X2, XFP and SFP+. But up to now, SFP+ is the most commonly used 10G transceivers available on the market. Fiberstore provides a large selection of 10G transceivers with minimum price and high quality. If you have any requirement of our products, please contact us directly.

Monday, December 28, 2015

Basic Information About Fiber Optic Transceiver

Optical fiber transceivers are also called fiber optic transmitter and receiver, which are used to send and receive optical information in a variety of different applications. The role of the optical module is photoelectric conversion. These optical modules are scalable and flexible in their use, and this is why they are preferred by designers. Here is what you need to know about the basics of fiber optic transceivers.
Fiber Optic Transmitters and Receivers
Fiber optic transmission system consists of a transmitter on one end of a fiber and a receiver on the other end. The transmitter end takes in and converts the electrical signal into light, after the optical fiber transmission in the fiber cable plant, the receiver end again converts the light signal into electrical signal. Both the receiver and the transmitter ends have their own circuitry and can handle transmissions in both directions. Fiber optic cables can both send and receive information. The cables can be made of different fibers, and the information can be transmitted at different times. The following picture shows a fiber optic datalink.
fiber optic datalink
Sources of Fiber Optic Transceiver
There are four types of fiber transmitters used to convert electrical signals into optical signals. These sources of fiber optic transmitters include: distributed feedback (DFB) lasers, fabry-perot (FP) lasers, LEDs, and vertical cavity surface-emitting lasers (VCSELs). They are all semiconductor chips. Take QSFP-40G-UNIV as an example, it is Arista QSFP-40G-UNIV compatible 40G QSFP+ transceiver. It uses DFB lasers as sources for fiber optic transmitters, which are used in long distance and DWDM systems. DFB lasers have the narrowest spectral width which minimizes chromatic dispersion on the longest links.
Arista QSFP-40G-UNIV
The choice of the devices is determined mainly by speed and fiber compatibility issues. As many premises systems using multi-mode fiber have exceeded bit rates of 1 Gb/s, lasers (mostly VCSELs) have replaced LEDs. Fiber optic transceivers are reliable, but they may malfunction or become out-dated. If an upgrade is necessary, there are hot-swappable fiber optic transceivers. These devices make it easy to replace or repair without powering down the device.
How Fiber Optic Transceiver Works?
Information is sent in the form of pulses of the light in the fiber optics. The light pulses have to be converted into electrical ones in order to be utilized by an electronic device. Thanks to the conversion by fiber optic transceivers: In its fiber optic data links, the transmitter converts an electrical signal into an optical signal, which is coupled with a connector and transmitted through a fiber optic cable. The light from the end of the cable is coupled to a receiver, where a detector converts the light back into an electrical signal. Either a light emitting diode (LED) or a laser diode is used as the light source.
Packaging
Optical fiber transceivers are usually packaged in industry standard packages like SFP, SFP+, XFP, X2, Xenpak, GBIC. According to the fiber type it connects to, there are MM (multi-mode), SM (Single-mode), as well as WDM fiber (CWDM, DWDM modules). The SFP modules support up to 4.25 Gbps with a connector on the optical end and a standard electrical interface on the other end. The QSFP are for 40 Gigabit networks using a LC duplex connection. Take compatible Brocade 40G-QSFP-LR4 as an example, it supports link lengths of 10km on single-mode fiber cable at a wavelength of 1310nm.
Summary
Keep in mind that fiber optic transceiver has two ends. One has an optical cable plug and another for connecting an electrical device. Each aspect of the transceivers is necessary to properly deliver a signal to its destination. Be aware of all aspects of fiber optic transceivers to purchase what you need for your application. Fiberstore supplies a wide variety of 40GBASE QSFP+ transceiver modules for you to choose from. More detailed, please contact us directly.

Tuesday, November 10, 2015

Unveiling 10G Transceiver Modules

As the core of optoelectronic device in the WAN, MAN or LAN application, fiber optic transceivers have developed various types along with the increasing in complexity. Take 10G transceiver module as an example, it has experienced developments from XENPAK, X2, XFP and finally realized with SFP+. Many users raised the questions related to the main difference between these optical modules. So, in the following part, we will provide some main tips about the difference among the XENPAK, X2, XEP and SFP +.
Four Transceiver Modules—Description & Comparison
Those four transceivers (see in Figure 1) are all used to transmit 10G signal using Ethernet protocol. They are the result of Multi-Source Agreement (MSAs) that enable vendors to produce 802.3ae-compliant pluggable transceivers. The following part will provide a general guide to these module types.
10G transceiver modules
XENPAK—the first 10GbE pluggable transceiver optics. Presents SC connectors
X2—the successor to the XENPAK (the smaller brother of the XENPAK). Presents SC connectors
XFP—the first of the small form factor 10GbE optics and newest pluggable transceiver. Presents LC connectors
SFP+—a 10GbE optics using the same physical form factor as a gigabit SFP. Because of this, many of the small SFP+ based 10GbE switches use 1G/10G ports, giving an added degree of flexibility. Presents LC connectors.
The first published XENPAK was by far the largest in physical size, which totally limited its popularity on the market. Many vendors then began to work on alternative standards. Finally in 2003, MSAs published another two 10G transceiver modules called X2 and XFP. X2 and XFP modules have been developed that support all of the high-power, long-distance applications once reserved for the larger XENPAK transceivers. But nowadays, SFP+ has gradually replaced the XFP and becomes the main stream of 10G transceivers markets. Why? The following part will answer you.
Contrast Between XFP and SFP+
XFP modules are hot-swappable and protocol-independent. They typically operate at near-infrared wavelengths of 850nm, 1310nm or 1550nm. They can operate over a single wavelength or use dense wavelength-division multiplexing techniques. SFP+ published on May 9, 2006, is an enhanced version of the SFP that supports data rates up to 16 Gbit/s. SFP+ supports 8 Gbit/s Fibre Channel, 10 Gigabit Ethernet and Optical Transport Network standard OTU2. It is a popular industry format supported by many network component vendors. Although the SFP+ standard does not mention 16G Fibre Channel, it can be used at this speed.
Both SFP+ and XFP are 10G transceivers, and can connect with other 10G transceivers. The main reason why SFP+ gain more market share than XFP is that SFP+ is more compact sized than XFP. The smaller SFP+ transfers the modulation functions, serial/deserializer, MAC, clock and data recovery (CDR) and EDC functions from the module to the motherboard on the card. In addition, cost of SFP+ is lower than XFP. Because XFP relies on a high-speed interface (10.3125Gbps), high-priced serializer/deserializer (SERDES) is required inside the switch to support it. They add an unacceptable cost to the base system of XFP. XFP complies with protocol of XFP MSA while SFP+ complies with IEEE802.3, SFF-8431, SFF-8432. SFP+ is the mainstream design currently.
Conclusion
SFP+, with its advantages of smaller size, low-cost and meeting the demand of high-density fiber transceivers, is anticipated to give rise to the realization better speed communication networks of the next generation. Fiberstore, as a professional optical transceiver modules manufacturer, supplies a complete range of 10G transceiver modules that can be customized as well. SFP-10G-ER, HP J9150A, F5-UPG-SFP+-R, Finisar FTLX1471D3BCL, QFX-SFP-10GE-SR—these compatible 10G transceiver modules are all available at Fiberstore. If you want to know more about 10G transceiver modules, welcome to contact us.

Thursday, November 5, 2015

Classification of Transceiver Modules

Transceiver modules can be classified into different categories based on several different criteria. Package, transmission distance, wavelength, work rate, fiber mode, and connector type are all the common characteristics used for defining fiber optic transceivers. The following is a brief introduction to some of the characteristics used in classifying transceiver modules.
Package of Fiber Optic Transceiver
According to the optical module package, fiber optic transceivers can be divided into SFP, SFP+, XFP, GBIC, X2, XENPAK, QSFP+, PON, CSFP, CFP, 1X9 and SFF. Each package has its unique feature. Nowadays, SFP, SFP+, XFP and QSFP+ are the popular packages and they have been widely used in many fields, such as video communication field, aerospace, fiber to the home and so on. The image below shows a compatible HP SFP transceiver module.
compatible HP SFP
Data Transfer Distance
In relation to data transfer distance, one major difference is multi-mode versus single-mode transceivers. For instance, a multi-mode transceiver will typically cover a distance of 100 m to 500 m. A single-mode transceiver can transmit a distance from 2 km to 120 km. This is an important aspect that people should consider when selecting a transceiver for an application. If the transmission distance is not adequate, the application will not work properly. Data transmission distance may be affected by whether the transceivers are single fiber or dual fiber.
Wavelength
Wavelength is the distance between repeating units of a propagating wave of a given frequency. Fiber optics transceivers transmit signal typically around 850, 1300 and 1550 nm. Multi-mode fiber is designed to operate at 850 and 1300 nm, while single-mode fiber is optimized for 1310 and 1550 nm.
Recent telecom systems use wavelength-division multiplexing (WDM), either DWDM (dense WDM) or CWDM (coarse WDM). For the fiber optic transceiver modules, the common wavelength (see in below image) includes 850 nm, 1279 nm, 1310 nm, 1330 nm, 1490 nm, 1510 nm, 1550 nm and 1610 nm. In the CWDM system, the wavelength range is from 1270 nm to 1610 nm, 20nm as a wave band. In the DWDM system, the wavelength range is also from 1270 nm to 1610 nm, but 0.8nm as a wave band.
wavelength in CWDM&DWDM system
Work Rate
The above type of classification brings two distinct types—full duplex mode and half duplex mode. The full duplex mode occurs when the data transmission is transmitted by two different transmission lines. There is communication at both ends of the device and is used for both sending and receiving operations. In this type of transceiver configuration, there is typically, no time delay generated by the operation.
The half-duplex mode is used with a single transmission line that is used for both reception and transmission. The communication cannot occur simultaneously in the same direction. That’s why it’s called the half-duplex system.
Managed Versus Unmanaged Transceivers
Unmanaged Ethernet optical transceivers are typically plug and play. They may have electrical interfaces with hardware DIP switch settings mode. With managed Ethernet fiber optic transceivers, they support a carrier-grade network management.
Conclusion
When you design for fiber optic transceiver, these classification criteria will come in handy. Fiberstore, as an professional telecommunication manufacturer, provides a large amount of fiber optic transceiver modules like SFP+ transceiver, X2 transceiver, XENPAK transceiver, XFP transceiver, SFP transceiver, GBIC transceiver, CWDM/DWDM transceiver, etc. J4858C, DS-SFP-FC8G-SW, DEM-310GT and Finisar FTLX1471D3BCL are all available at Fiberstore. They are fully compatible with major brand. If you have any question, please contact us directly.