Showing posts with label FTTH. Show all posts
Showing posts with label FTTH. Show all posts

Thursday, June 16, 2016

How to Reduce the Cost of FTTH Architecture

In our digital world, people increasingly require higher bandwidth to facilitate daily life, whether for leisure, work, education or keeping in contact with friends and family. The presence and speed of internet are regarded as the key factor that subscribers would take into account when buying a new house. Recently there are a growing number of independent companies offering full fiber to the home (FTTH) services, ranging from local cooperatives and community groups to new operators. Today’s article will pay special attention to the reasons why we should implement FTTH network and the methods to reduce the cost of FTTH network.
Why Should We Deploy FTTH Network?
FTTH logo
No denying that the world is changing rapidly and becoming increasingly digital. People nowadays are knowledgeable workers who rely on fast connections to information stored in the cloud to do their jobs. Therefore, installing superfast FTTH broadband is an investment in equipping communities with the infrastructure they need to not just adapt to the present life, but to thrive in the future.
What’s more, the economic benefits of FTTH, for residents, businesses and the wider community are potentially enormous. While there are upfront costs in FTTH deployments, particularly around the last drop, equipment and methodologies are evolving to reduce these significantly. Fiber to the home is proven to increase customer satisfaction, and enables operators to offer new services, such as video on demand, 4K TV and smart home connectivity.
As well as bringing in economic benefits, FTTH broadband provides local businesses with the ability to expand, invest and seek new opportunities by providing rapid connections to major markets. All of this leads to increased investment in the rural economy, providing residents with more choice and stimulating growth.
What to Do?
Although deploying FTTH network might be similar cost as deploying copper network, there are some methods that you should know about reducing the costs of FTTH architecture. Adopting the following three principles helps achieve FTTH deployment, maximizing return on investment and dramatically reducing deployment times.
1. Reuse the Existing Equipment
Time and the total cost of FTTH deployment are typically relevant with the civil engineering side of the project, such as digging a new trench and burying a new duct within it. Where possible, crews should look to reuse existing infrastructure—often there are ducts or routes already in place that can be used for FTTH and in building deployments. These could be carrying other telecommunication cables, power lines, or gas/water/sewerage. Installing within these routes requires careful planning and use of cables and ducts that are small enough to fit through potentially crowded pathways. Figure 2 shows a generic point-multipoint architecture that fiber jumper plays an important part in it.
FTTH architecture
Additionally utilizing the push and pull cables in FTTH infrastructure simply reduce costs and install time as network installers can easily complete FTTH deployment by using pushing or pulling cables: pushing can be aided by simple, cost-effective handheld blowing machines, or pulled through the duct using a pre-attached pull cord. Even for more complex and longer environment, FTTH deployment can be quickly completed other than requiring expensive blowing equipment to propel the cable through duct.
2. Choose the Right Construction Techniques
If it is time to start digging, always make sure you use appropriate construction methods. The appropriate method will minimize cost and time by making construction work as fast and concentrated as possible, avoiding major disruption to customers or the local area. And remember to make sure you follow best practice and use the right fiber cable and duct that can fit into tight spaces and withstand the high temperatures of the sealant used to make roadways good.
FTTH deployment
The cable and duct used within FTTH implementations is crucial. Ensure that it meets the specific needs of deployments, and is tough, reliable and has a bend radius. It should be lightweight to aid installation and small enough to fit into small gaps and spaces in ducts. Also look to speed up installations with pre-connectorized cables that avoid the need to field fit or splice.
3. Minimize the Skills Required
Staff costs are one of the biggest elements of the implementation budget. Additionally, there are shortages of many fiber skills, such as splicing, which can delay the rate at which rollouts are completed. Operators, therefore, need to look at deskilling installations where possible, while increasing productivity and ensuring reliability. Using pre-connectorized fiber is central to this—it doesn’t require splicing and is proven to reduce the skill levels needed within implementations.
Conclusion
To cope with the digital world, the network is in constant need of enhancements and the increasingly stressed bandwidth and performance requires ongoing adjustment. Regardless of the FTTH architecture and the technology to the curb, the pressure is on for the network installer to deploy FTTH quickly and cost-effectively, while still ensuring a high quality, reliable installation that causes minimal disruption to customers and the local area. Fiberstore offers a variety of optical equipment that are suitable in telecom field. Our fiber optic cables are available in different optical connector, single-mode and multimode fiber as well as indoor or outdoor cables. For example, patch cord LC-LC are also provided.

Monday, June 6, 2016

Loose-Tube or Tight Buffer Indoor/Outdoor Cable for FTTH Application

FTTH (Fiber to the Home) network compared with technologies now used in most places, increases the connection speeds available for residences, apartment building and enterprises. FTTH network is the installation and use of optical fiber from a central point known as an access node to individual buildings. The links between subscriber and access node are achieved by fiber jumper cables. Loose-tube and tight buffer cables are commonly used to transmit signals with high speed, which are capable of supporting outdoor or indoor environment. Is there a cost-effective solution that can support both indoor and outdoor environment in FTTH network? To answer this, the construction and comparison of loose tube cable and tight buffer cable will be introduced in the following article.
Loose-Tube and Tight-Buffer Cable
The “buffer” in tight buffer cable refers to a basic component of fiber optic cable, which is the first layer used to define the type of cable construction. Typically a fiber optic cable consists of the optical fiber, buffer, strength members and an outer protective jacket (as showed in Figure 1). Loose-tube and tight-buffer cables are two basic cable design. Loose-tube cable is used in the majority of outside-plant installations, and tight-buffered cable, primarily used inside buildings.
Basic-Structure-of-Loose-Tube-Cable
Loose-tube cable consists of a buffer layer that has an inner diameter much larger than the diameter of the fiber see in the following picture. Thus, the cable will be subject to temperature extremes in the identification and administration of fibers in the system. That’s why loose-tube cables are usually used in outdoor application. The loose-tube cables designed for FTTH outdoor application are usually loose-tube gel-filled cables (LTGF cable). This type of cable is filled with a gel that displaces or blocks water and prevents it from penetrating or getting into the cable.
Tight buffer cable using a buffer attached to the fiber coating is generally smaller in diameter than loose buffer cable (showed in Figure 2). The minimum bend radius of a tight buffer cable is typically smaller than a comparable loose buffer cable. Thus tight buffer cable is usually used in indoor application.
the basic structure of tight buffer cable
Tight buffered indoor/outdoor cable with properly designed and manufactured can meet both indoor and outdoor application requirements. It combines the design requirements of traditional indoor cable and adds moisture protection and sunlight-resistant function to meet the standards for outdoor use. Tight buffered indoor/outdoor cable also meets one or more of the code requirements for flame-spread resistance and smoke generation.
Choose Tight Buffer Cable for FTTH Network
The inner construction of tight buffer indoor/outdoor cable have been introduced above. The following will explain why tight buffered indoor/outdoor cable is a better FTTH cabling solution. Figure 3 shows a clear structure of FTTH network.
FTTH network
Using the traditional choice of LTGF cables as the outdoor cable, there would be a conversion from one fiber type to another type, which includes prep work on the fiber, the need for splice tray, the routing of fibers in the tray, and other similar detail. Before termination and splicing, the gel of LTGF cable must be cleaned and the breakout point of the main cable must be blocked by some method to prevent oozing of the cable gel. In addition, this cable type must normally be terminated or spliced close to the cable entryway of a building to switch to indoor cable, as it generally incompatible with indoor fiber codes. This time consuming and labor intensive process adds hidden costs to install the LTGF cables.
However, using only tight buffer indoor/outdoor cable for FTTH is much more convenient and cost-effective. A tight-buffered indoor/outdoor cable can be used throughout the link, requiring no transitions at the building entryway. Tight buffer indoor/outdoor cable requires less care to avoid damaging fibers when stripping back the cable. The termination and splicing of these cables are easier than that of LTGF cables.
An important reason why choose tight-buffered indoor/outdoor cable for FTTH cable installation is the reliability of the overall system. Splicing are the weakest point in a FTTH network. With splicing, the bare fiber ends are open to dust, dirt, water, vapor, and handing which might reduce the fiber strength and increase brittleness. Choosing loose tube outdoor cable for FTTH, there will be splices after the conversion from one cable type to another type. The splices inside a building may be held in a cabinet that is open to the air, which might decrease the reliability of the FTTH network. Using the tight buffer indoor/outdoor cable could eliminate splicing and improve the installation reliability greatly.
Conclusion
This article has explained loose-tube and tight buffer indoor/outdoor cables. Network installer can run a single cable type and remove a transition point between the outside plant and the inside plant. At the same time, the reliability of the overall FTTH network can be increased greatly. FS.COM offers high quality fiber cable assemblies such as Patch Cords, Pigtails, MCPs, Breakout Cables etc. All of our custom fiber patch cords can be ordered as Single Mode 9/125, Multimode 62.5/125 OM1, Multimode 50/125 OM2 and Multimode 10 Gig 50/125 OM3/OM4 fibers. If you have any requirement, please send your request to us.

Monday, May 30, 2016

It’s Time to Deploy FTTH

Fiber to the home (FTTH) developments clearly influence the demand for today’s home purchases. Developers and home builders recognize the need for reliable high-speed broadband communications. Thus they should seize the opportunity to design FTTH network during the design and construction of the development. In fact, deploying FTTH in a new development is at cost similar with deploying copper at the same location. But the long-term benefits stemming from fiber-ready infrastructure further catch people’s attention. Unlike coax and xDSL, fiber is more than just fast. So why implement FTTH development? The following article will give a further illustration of the reasons.
Fast Bandwidth
Cable modem and xDSL helped residential broadband get off the ground. Now, however, the sheer speed of fiber overcomes bandwidth limitations of coax and copper. To illustrate, rising consumer demand for big-screen LCD displays can chew up 19 Mbps of bandwidth per channel. In addition, broadband connections are constantly clamoring for more band-width, both upstream and downstream. With busier lives, families want high-speed broad-band communications to transfer e-mail, digital photos and Internet files and they also want entertainment options such as time-sensitive, interactive video gaming that requires bi-directional bandwidth capability. With the typical household having three or more TVs and the ferocious appetite of broadband vying for capacity, it is easy to see that an abundant supply of fiber bandwidth must be included in the design and construction of the development. Figure 1 shows the basic FTTH architecture.
BASIC-FTTH-ARCHITECTURE-LANDED-PROPERTIES-SOLUTION
Reliable Capacity
Noisy channel conditions, inclement weather, environmental clutter such as buildings and trees, corroded connections and distance limitations can all impact the reliable delivery of residential broadband. However, the FTTH network access architecture is immune to all of these conditions so there is virtually no downtime. In addition, economical battery backup at the residential NID automatically kicks in when line power is interrupted. Furthermore, FTTH assures the demanding subscriber that they always receive the high-speed broadband capacity that they are paying for, both upstream and downstream, no matter how loaded the access network may be. This built-in reliability is no longer the exception but rather what the homeowner now expects and the builder’s life becomes much easier with satisfied homeowners.
Easy Deployment
Making the optical channel ready for signals once required a skilled technician to carefully splice fiber cables together. Today, the success of FTTH is no longer tied to fiber splicing in the field. As already alluded to, the distribution and drop segments of the FTTH network are easily deployed and intuitively connected. For example, the preterminated fiber drop can reduce subscriber connection time by up to 50 percent because it can be easily screwed into the terminal and the NID by an installer who does not need to know anything about fiber. In the distribution segment, the ease of deployment can shave off 80 percent of the deployment time, because once the terminal distribution system has been placed, homes are immediately ready to be connected into the network.
terminal process
In addition, with FTTH, there is no need for high-voltage power supplies in the neighborhood. Manufacturers are also continuing to improve the appearance and reduce the size of fiber cabinets and terminals relative to the traditional copper products. Combined, this results in a much more aesthetically pleasing deployment than ever before.
Future Proofing
An FTTH network offers land developers an enviable return on their investment capital. Timely planning today can net thousands of dollars in profit. For example, if you invest $500 per home to deploy the fiber jumper and connecting hardware and the home then sells for $5,000 more than it would have otherwise, your investment just returned a handsome 1000 percent profit. That is easy math and easy money.
The return on fiber investment does not stop with its deployment, however. The network operator will also appreciate that robust, reliable and cost-effective FTTH network as they seriously consider their operational expenses. For example, an optical access network featuring segments that can, by design, be quickly connected together not only reduces the upfront deployment cost but also will reduce the amount of time required to turn up subscribers, test and troubleshoot the network. As the triple-play battle for the residential customer continues, a preterminated FTTH network can make the business case very enticing because it sets the network operator’s stage for reduced operational costs and additional revenue from advanced services such as home security and home networking.
Operationally, fiber drop cables are quickly and easily screwed into terminals and residential network interface devices (NID) across the country to save both time and money. Without these key advances in FTTH technology that reduce capital and operational costs, FTTH would continue to wrestle its competitors but now FTTH wins the access investment hands down.
Beneficial Solution
Modern day residential services like HDTV and high-speed broadband that enhance the quality of life in homes are being delivered via FTTH. Looking forward, FTTH residential developments ensure that advanced services such as telecommuting, telemedicine and distance learning will all be transparently realized. FTTH results in reduced commutes and environmental pollution, prolonged quality of life, and education, education, education. Broadband communications is a key element in an increasingly competitive global economy. With FTTH, the world will be better positioned for social and economic prosperity.
Summary
To sum up, FTTH deployment is unstoppable with all the positive impacts that fiber affords. If you are still waiting for service providers to install cable and manually turn up services, then you are left behind. Fiberstore provides a full range of fiber jumper cables suitable for FTTH deployment. MM fiber patch cords and single mode fiber patch cables are also available. Come to us if you have any request for our products.