Showing posts with label 25GbE. Show all posts
Showing posts with label 25GbE. Show all posts

Friday, May 19, 2017

Introduction to 10GbE/25GbE/40GbE/100GbE Fiber Optic Cabling

Technology is changing rapidly. Just when you got used to Gigabit Ethernet speeds being a fast & reliable system, someone unveiled 10GbE, 25GbE, 40GbE or even 100GbE systems a few years later. The newer and higher performing iterations are indeed the great breakthrough for telecommunication industry, but also pose difficulty in choosing network migration path—10G to 40G to 100G, or to 25G to 50G to 100G. We have described 10G, 25G, 40G and 100G Ethernet technology before, now in this blog, we’d like to introduce the four fiber optic cabling, and compare two 100G migration paths.
Cost-effective 10GbE Fiber Optic Cabling
10 Gigabit Ethernet technology defined by IEEE 802.3ae-2002 standard, is matured nowadays. Just like the “old” Gigabit Ethernet, 10Gb network can be terminated with either copper or fiber cabling. 1000BASE-T standard usually uses the Cat5e cables as the transmission media, while 10GbE bandwidth requires high grade copper cables like Cat6/Cat6a/Cat7 cables to support 10Gbps data rate. For instance, 10G SFP+ 10GBASE-T transceiver modules utilize Ethernet copper cables (Cat6a/Cat7) for a link length of 30m. SFP+ direct attach cables (DAC) and active optical cables (AOC) are also regarded as the cost-effective solutions for 10G short-reach applications. Besides 10G copper cables, there are single-mode (OS2) and multimode fiber patch cables (OM3/OM4) applied to different 10GbE IEEE standards. For the detailed information about the 10G cabling options, please see the following table.
10G fiber optic cable
As to the 10G fiber optic transceivers, there are a series of optical form factors including the XENPAK, X2, XFP, SFP+. The former three 10GbE optical transceivers were released earlier than smaller 10G form factor—SFP+ module. However, owing to their larger footprint, they are not successful on the 10G hardware market. Furthermore, SFP+ optics, compliant with several IEEE standards (SR, LR, LRM, ER, ZR and 10GBASE-T...) wins the heart of 10G end-users.
Singe-lane Design Makes 25GbE Shine
When 25G Ethernet was developed to support a single-lane 25Gbps standard in 2014, it was treated as the “new” 10GbE technology but delivers 2.5 times more data. Compared to 40GbE that was based on 10GbE, 25GbE with one lane obviously improves the port density and cost requirement. 25GbE network can support both copper and fiber optic cables, seen in the below table.Similar to 10GbE networks, 25G Ethernet physical interface specification supports several 25Gbps capable form factors, including CFP/CFP2/CFP4, SFP28 (1x25 Gbps) and QSFP28 (4x25 Gbps), which is also used for 100GbE. SFP28 25GBASE-SR and 25GBASE-LR SFP28 are two popular 25GbE optical transceiver modules available on the market, the former supports up to 100m link length while the latter allows a maximum transmission distance of 10 km.
25G optical modules
The available optical switches of the market do not support direct 25GbE connections using an SFP28 direct attach copper (DAC) cable. It is recommended to use a breakout cable that allows four 25GbE ports to connect to a 100GbE QFSFP28 switch port. FS.COM SFP28 DAC cable lengths are limited to four meters (1m, 2m, 3m, 5m) for 25GbE. And if you prefer a longer length, the 25GbE active optic cable (AOC) solutions are good recommendations.
25G Optics SFP28TypeMedia/Reach
All 25G SFP28 Ports25GBASE-SR50µm MMF / 70m
25GBASE-LR9µm SMF / 10km
25GBASE-AOCPre-terminated in 3, 5, 7, 10, 15, 20, 25, 30m lengths
OM4 MMF MTP/MPO150m
25G Copper SFP28TypeMedia/Reach
All 25G SFP28 Ports25GBASE-CR Twinax / 'Direct Attach'Pre-terminated in 1m, 2m, 3m, 5m lengths
Fast & Reliable 40GbE Fiber Optic Cabling
Like the 10GbE fiber optic cabling, there are several IEEE standards of 40GbE transceiver in the whole evolution. 40G QSFP+ optical transceivers are the most commonly used optics for 40G network. So how to choose fiber optic cables for 40G optical transceivers? The following table will help you out.
40G modules
Besides the QSFP+ fiber transceivers and fiber optic cables, 40G DAC cables available in QSFP+ DAC cables and AOC cables enable short-reach options. For 40G cabling, QSFP+ to QSFP+ (40G to 40G) and QSFP+ to 4SFP+ (40G to 10G) breakout cables satisfy customers for various fiber types and reach requirements.
100GbE Fiber Optic Cabling For Future Proofing
With the price of 100G optics cutting down in 2017, 100GbE network is no longer out of customers’ reach. Telecom giants like Cisco, Arista, HPE launches series of 100G optical switches to meet the market demand. And for other 100G components like 100G optical transceivers, fiber patch cables, racks & enclosures, etc, those are ubiquitous on the market.
100G optical transceivers including the CFP, CFP2, CFP4, CXP and the most popular 100G QSFP28 optics in IEEE standards provide a great selection to the overall users.For 100G inter-rack connections, QSFP28 to QSF28 Direct Attach Copper (DAC) Cables and Active Optical Cables (AOC) as well as the QSFP28 to SFP28 breakout cables are the cost-effective solutions.
 
Conclusion
This article introduces 10G/40G/100G fiber optic cabling, and make a clear comparison between the two paths to 100GbE. Customers prefer 4×25Gbps for the reasons: Less parallel paths, less fibers, less optics, less everything. For those who want to upgrade from 40G to 100G, appreciate the reliable performance of 40G with the potential to run across 2 parallel 25Ghz rather than 4 required today.

Thursday, December 3, 2015

SFP28 and QSFP28 Optical Modules For 25 Gigabit Ethernet

The widely acknowledged Ethernet speed upgrade path was 10G-40G-100G. However, a new development indicates the latest path for server connection will be 10G-25G-100G with potential for future upgrading to 400G. But why 25G? Because moving from 10G to 40G is a big jump and it turns out the incremental cost of 25G silicon over 10G is not that great. This new standard will require improved cables and transceiver modules capable of handling this additional bandwidth, under this circumstance, QSFP28 and SFP28 are promoted.
25GbE Ethernet—An Emerging Standard
25 Gigabit Ethernet (25GbE) has passed the first hurdle in the IEEE standards body with a successful Call for Interest (CFI) in July, 2014. It is a proposed standard for Ethernet connectivity that will benefit cloud and enterprise data center environments. 25GbE leverages technology defined for 100 Gigabit Ethernet implemented as four 25-Gbit/s lanes (IEEE 802.3bj) running on four fibers or copper pairs. The follow picture shows 25G Access Network.
25G Access Network
Significant Performance Benefits—25G Over 40G
The value of 25GbE technology is clear in comparison to the existing 40GbE standard. Obviously, 25GbE technology provides greater port density and a lower cost per unit of bandwidth for rack server connectivity. For applications that demand substantially higher throughputs to the endpoint, there exists 50GbE—using only two lanes instead of four—as a superior alternative to 40GbE in both link performance and physical lane efficiency.
The proposed 25GbE standard delivers 2.5 times more performance per SerDes lane using twinax copper wire than that available over existing 10G and 40G connections. A 50GbE link using two switch/NIC SerDes lanes running at 25 Gb/s each delivers 25% more bandwidth than a 40GbE link while needing just half the number (four) of twinax copper pairs. Therefore, a 25GbE link using a single switch/NIC SerDes lane provides 2.5 times the bandwidth of a 10GbE link over the same number of twinax copper pairs are used in today’s SFP+ direct-attach copper (DAC) cables.
Perhaps the most important benefit of 25GbE technology to data-center operators is maximizing bandwidth and port density within the space constraints of a small 1U front panel. It also leverages single-lane 25Gb/s physical layer technology developed to support 100GbE.
Cloud Will Drive to QSFP28 and SFP28
QSFP28 is used for 4x25GE and SFP28 is used for a single 25GE port. SFP28 module, based on the SFP+ form-factor, suports the emeraging 25G Ethernet standard. It enables error-free transmission of 25Gb/s over 100m of OM4 multi-mode fiber and a new generation of high-density 25 Gigabit Ethernet switches and network interface cards, facilitating server connectivity in data centres, and a conventional and cost-effective upgrade path for enterprises deploying 10 Gigabit Ethernet links today in the ubiquitous SFP+ form factor.
The QSFP28 (25G Quad Small Form-Factor Pluggable) transceiver and interconnect cable is a high-density, high-speed product soluon designed for applicaons in the telecommunicaons, data center and networking markets. The interconnect offers four channels of high-speed signals with data rates ranging from 25 Gbps up to potentially 40 Gbps, and will meet 100 Gbps Ethernet (4x25 Gbps) and 100 Gbps 4X InfiniBand Enhanced Data Rate (EDR) requirements.
QSFP28 and SFP+
The demonstration showed QSFP28-SR4 modules and a compatible Finisar FTLX1471D3BCL 10GBASE-LR SFP+. The QSFP28 SR4 module is a vertically integrated solution that meets IEEE 802.3 standards and MSA requirements with power dissipation well under 3.5W. The module supports both 100GBASE-SR4 as well as 4x25G breakout applications. Both the QSFP28 SR4 and SFP28-SR modules are sampling now.
Conclusion
The dominant next-generation server connection speed is going to be 25G as it providing a cost competitive longer reach option for mainstream customers. Fiberstore is excited to introduce several products that will drive the next generation of data centre and enterprise interconnects. We currently do not supply 100G QSFP28 and 25G SFP28 based switches, but we do manufacture a full range of tranceivers, such as SFP+, X2, XENPAK, XFP, SFP, GBIC, CWDM/DWDM, 40G QSFP+ & CFP, etc. Compatible Finisar FTLX1471D3BCL and FTLF8524P2BNL are offered with minimum price and high quality. If you are interested, please feel free to contact us.