Friday, May 19, 2017

Introduction to 10GbE/25GbE/40GbE/100GbE Fiber Optic Cabling

Technology is changing rapidly. Just when you got used to Gigabit Ethernet speeds being a fast & reliable system, someone unveiled 10GbE, 25GbE, 40GbE or even 100GbE systems a few years later. The newer and higher performing iterations are indeed the great breakthrough for telecommunication industry, but also pose difficulty in choosing network migration path—10G to 40G to 100G, or to 25G to 50G to 100G. We have described 10G, 25G, 40G and 100G Ethernet technology before, now in this blog, we’d like to introduce the four fiber optic cabling, and compare two 100G migration paths.
Cost-effective 10GbE Fiber Optic Cabling
10 Gigabit Ethernet technology defined by IEEE 802.3ae-2002 standard, is matured nowadays. Just like the “old” Gigabit Ethernet, 10Gb network can be terminated with either copper or fiber cabling. 1000BASE-T standard usually uses the Cat5e cables as the transmission media, while 10GbE bandwidth requires high grade copper cables like Cat6/Cat6a/Cat7 cables to support 10Gbps data rate. For instance, 10G SFP+ 10GBASE-T transceiver modules utilize Ethernet copper cables (Cat6a/Cat7) for a link length of 30m. SFP+ direct attach cables (DAC) and active optical cables (AOC) are also regarded as the cost-effective solutions for 10G short-reach applications. Besides 10G copper cables, there are single-mode (OS2) and multimode fiber patch cables (OM3/OM4) applied to different 10GbE IEEE standards. For the detailed information about the 10G cabling options, please see the following table.
10G fiber optic cable
As to the 10G fiber optic transceivers, there are a series of optical form factors including the XENPAK, X2, XFP, SFP+. The former three 10GbE optical transceivers were released earlier than smaller 10G form factor—SFP+ module. However, owing to their larger footprint, they are not successful on the 10G hardware market. Furthermore, SFP+ optics, compliant with several IEEE standards (SR, LR, LRM, ER, ZR and 10GBASE-T...) wins the heart of 10G end-users.
Singe-lane Design Makes 25GbE Shine
When 25G Ethernet was developed to support a single-lane 25Gbps standard in 2014, it was treated as the “new” 10GbE technology but delivers 2.5 times more data. Compared to 40GbE that was based on 10GbE, 25GbE with one lane obviously improves the port density and cost requirement. 25GbE network can support both copper and fiber optic cables, seen in the below table.Similar to 10GbE networks, 25G Ethernet physical interface specification supports several 25Gbps capable form factors, including CFP/CFP2/CFP4, SFP28 (1x25 Gbps) and QSFP28 (4x25 Gbps), which is also used for 100GbE. SFP28 25GBASE-SR and 25GBASE-LR SFP28 are two popular 25GbE optical transceiver modules available on the market, the former supports up to 100m link length while the latter allows a maximum transmission distance of 10 km.
25G optical modules
The available optical switches of the market do not support direct 25GbE connections using an SFP28 direct attach copper (DAC) cable. It is recommended to use a breakout cable that allows four 25GbE ports to connect to a 100GbE QFSFP28 switch port. FS.COM SFP28 DAC cable lengths are limited to four meters (1m, 2m, 3m, 5m) for 25GbE. And if you prefer a longer length, the 25GbE active optic cable (AOC) solutions are good recommendations.
25G Optics SFP28TypeMedia/Reach
All 25G SFP28 Ports25GBASE-SR50µm MMF / 70m
25GBASE-LR9µm SMF / 10km
25GBASE-AOCPre-terminated in 3, 5, 7, 10, 15, 20, 25, 30m lengths
25G Copper SFP28TypeMedia/Reach
All 25G SFP28 Ports25GBASE-CR Twinax / 'Direct Attach'Pre-terminated in 1m, 2m, 3m, 5m lengths
Fast & Reliable 40GbE Fiber Optic Cabling
Like the 10GbE fiber optic cabling, there are several IEEE standards of 40GbE transceiver in the whole evolution. 40G QSFP+ optical transceivers are the most commonly used optics for 40G network. So how to choose fiber optic cables for 40G optical transceivers? The following table will help you out.
40G modules
Besides the QSFP+ fiber transceivers and fiber optic cables, 40G DAC cables available in QSFP+ DAC cables and AOC cables enable short-reach options. For 40G cabling, QSFP+ to QSFP+ (40G to 40G) and QSFP+ to 4SFP+ (40G to 10G) breakout cables satisfy customers for various fiber types and reach requirements.
100GbE Fiber Optic Cabling For Future Proofing
With the price of 100G optics cutting down in 2017, 100GbE network is no longer out of customers’ reach. Telecom giants like Cisco, Arista, HPE launches series of 100G optical switches to meet the market demand. And for other 100G components like 100G optical transceivers, fiber patch cables, racks & enclosures, etc, those are ubiquitous on the market.
100G optical transceivers including the CFP, CFP2, CFP4, CXP and the most popular 100G QSFP28 optics in IEEE standards provide a great selection to the overall users.For 100G inter-rack connections, QSFP28 to QSF28 Direct Attach Copper (DAC) Cables and Active Optical Cables (AOC) as well as the QSFP28 to SFP28 breakout cables are the cost-effective solutions.
This article introduces 10G/40G/100G fiber optic cabling, and make a clear comparison between the two paths to 100GbE. Customers prefer 4×25Gbps for the reasons: Less parallel paths, less fibers, less optics, less everything. For those who want to upgrade from 40G to 100G, appreciate the reliable performance of 40G with the potential to run across 2 parallel 25Ghz rather than 4 required today.

Friday, May 5, 2017

Compatible Gigabit SFP Optical Transceiver for Netonix WISP Switch

The Netonix WISP switch is the managed PoE Gigabit Switches with several Gigabit Ethernet RJ45 and SFP ports. Compared with Ubiquiti Networks Edgeswitch switches (40C), Netonix WISP switches was designed with a rugged chassis and extended operating temperature (-25 to 55C), which is more suitable for outdoor deployment. Furthermore, the ability to power AirFibers is the unique feature of WISP switches. This article will describe WISP switches in detail and help you choose the compatible Gigabit SFP optical transceivers for Netonix WISP switches.
Netonix Gigabit WISP Switches
WISP switches are the Netonix Gigabit switches with the performance of Non-Blocking Throughput Switching and software configuration passive PoE. The Netonix WISP switches feature the ability to power many popular 24V, 48V/50V passive PoE devices from manufacturers including Ubiquiti Networks airMAX™, UniFi™, SAF™, MIMOSA™, Ligowav™, and airFIBER™ product lines. There are WS-24-400A, WS-24-400B, WS-12-250A, WS-12-250B, WS-12-250-DC, WS-12-250-AC, WS-12-DC, WS-10-250-AC, WS-8-250-DC, WS-8-250-AC, WS-8-150-DC, WS-8-150-AC, and WS-6-MINI.
Note that: the No. “6”, “8”, “10”... in those model refers to the numbers of port. And “150” and “250” means the max power consumption. The above image shows the simple home network setup using WS-6-MINI switches.
Optical Transceiver Tested to Work Well in WISP Switches
According to Netonix community, the SFP (optical module form factor) Gigabit Ethernet ports on WISP switches accommodate a full range of SFP optical transceiver modules, including SFP 1000BASE-T, SFP 1000BASE-SX, SFP 1000Base-LX/LH, SFP 1000BASE-ZX, SFP 1000BASE-BX-D, SFP 1000BASE-BX-U, SFP 1000BASE-EX. The following SFP optical transceivers are reported to be working fine on WISP switches.
Major Branded Optical Transceivers For WISP Switches
Original SFP transceiver module
optical transceiver
Compatible Optical Transceivers for WISP Switches
Fiberstore compatible optical transceivers are reported to work well on Netonix WISP switches. The following table lists the detailed information about the compatible optical transceiver modules on WISP switches.
FS.COM compatible optical transceiver for WISP switches
The Netonix WISP switches were designed to be part of the Small Business or home networking products that work together as part of proven, fully integrated, easy-to-use small business solution. These switches support a huge number of Gigabit Ethernet SFP optical transceivers. All these high-quality fiber optic transceivers can be found on FS.COM for competitive prices. FS.COM is committed to provide free shipping in USA, Mexico and Australia.

Wednesday, April 26, 2017

How to Choose Fiber Optic Cable for 10G SFP+ Optical Transceiver?

How to choose fiber optic cables for 10G SFP+ transceivers? It seems like a dumb question for most of the fiber optic technicians. However, there are still some people, especially the green-hand network installers, may not know the compatibility between fiber optic cables and optical transceiver modules. Today, I want to make a clear illustration of how to choose the right transmission media (OS2/OM3/OM4/Cat6/Cat6a) for 10G SFP+ optical transceiver modules.
Overview of SFP+ Optical Transceiver Module
Before coming to the main part of this article, let’s first have a brief overview of the SFP+ optical transceiver modules and 10G fiber & copper cables.
  • 10GBASE SFP+ optical transceivers
SFP+ optical transceivers, according to the IEEE standards, can be divided into several types, for example, 10GBASE-LRM SFP+, 10GBASE-LR, 10GBASE-ER SFP+, 10GBASE-ZR SFP+, 10GBASE-SR SFP+, 10GBASE-T SFP+. Each SFP+ optical transceiver type has its own specification and usage that are not be listed here. For more, please review the previous articles.
  • BiDi SFP+ Modules
Besides the above 10GBASE SFP+ modules, 10GBASE-CWDM SFP+, 10GBASE-DWDM SFP+ and SFP+ BiDi optical transceiver modules are also the most commonly used 10G SFP+ optics. SFP+ BiDi optical transceiver usually uses two different wavelength to achieve 10G transmission over one fiber. The most frequently used wavelength of BiDi optical module is 1310nm/1550nm, 1310nm/1490nm, 1510nm/1590nm.
  • CWDM/DWDM SFP+ Modules
The Coarse Wavelength-Division Multiplexing (CWDM) and Dense Wavelength-Division Multiplexing (DWDM) SFP+ optics are the convenient and cost-effective solution for the adoption of 10 Gigabit Ethernet in campus, data-center, and metropolitan-area access networks. This 10G fiber optic transceiver type can support up to eight channels of 10GbE over single-mode fibers for distance over 80km.
10G Fiber & Copper Patch Cables
Fiber optic cables can be categorized into two types: single-mode and multimode fiber optic cables. They have different core size and fiber optic transmission equipment, which makes them suitable in different applications. Single-mode fiber patch cables, or OS1/OS2 (OS1 is now not popular on the market) are normally used for long-distance transmission with laser diode based equipment.
OS2 OM4 Cat6a for 10G SFP+ module
Multimode fiber cables, or OM1/OM2/OM3/OM4, have a relatively large light carrying core, usually utilized for short-distance transmission with LED based equipment. OM1, with a core size of 62.5um, supports 1GB network within 300m. OM2 (50um) can support up to 10GB, with a distance of 600m. OM3 and OM4 are the laser-optimized multimode fibers, which can be used in 10GB network with a link length of 300m, 550m respectively. These types of optical cables can be also used on 40G/100G network utilizing a MTP/MPO connector.
Cat6/Cat6a cables are the Copper Ethernet Network cables used for 10G network. Compared with Cat5e (1 Gigabits of data) and Cat5 cables (10/100 Mbps), Cat6 is the Ethernet cable that can handle up to 10Gbps with the distance limited to 164ft. Cat6a is the advanced version of Cat6 cables that further reduce crosstalk, which makes it can support the full 328 feet of Ethernet cable.
Choosing Fiber Optic Cables for 10G SFP+ Optical Transceivers
As noted before, single-mode patch cables can be used for 10G 10GBASE-LRM SFP+, 10GBASE-LR SFP+, 10GBASE-ER SFP+, 10GBASE-ZR SFP+, 10GBASE-CWDM SFP+, 10GBASE-DWDM SFP+ and SFP+ BiDi modules.
Cable TypeConnectorMax Distance
10GBASE-LRM SFP+9/125 SMFLC Duplex200m
10GBASE-LR SFP+9/125 SMFLC Duplex10km
10GBASE-ER SFP+9/125 SMFLC Duplex40km
10GBASE-ZR SFP+9/125 SMFLC Duplex80km
CWDM SFP+9/125 SMFLC Duplex80km
DWDM SFP+9/125 SMFLC Duplex80km
SFP+ BiDi9/125 SMFLC/SC Simplex80km

Multimode fibers, especially the OM3 and OM4 cables, are supported for 10GBASE-SR SFP+ transceiver modules. The following chart displays the part No. of customized OM3 and OM4 cables.
Customized Part IDConnectorFiber ModePolish TypesJacketStock Length
17235LC Duplex50/125 OM4UPCPVC1m-30m (3ft-98ft)
17235LC Duplex50/125 OM4UPCLSZH1m-15m (3ft-49ft)
17235LC Duplex50/125 OM4UPCOFNP1m-15m (3ft-49ft)
12018LC Duplex50/125 OM3UPCPVC1m-30m (3ft-98ft)
12018LC Duplex50/125 OM3UPCLZSH1m-30m (3ft-98ft)
12018LC Duplex50/125 OM3UPCOFNP1m-15m (3ft-49ft)

Cat6 and Cat6a Patch cables can be only used on the 10GBASE-T SFP+ transceivers.
10GBASE-T RJ45 SFP+ Copper module
Keep in mind, the newly available SFP+ copper transceiver modules can only support up to 30m.
This article lists all the existing the 10G fiber & copper patch cables and SFP+ transceiver module types, as well as the guidance about how to select the right patch cables for 10G SFP+ optical transceivers. FS.COM offers a full range of SFP+ optical transceiver modules and patch cables. Please contact us if you need any help.

Monday, April 17, 2017

Comparing 10GBASE-T SFP+ Transceiver Module With SFP+ SR/LR Optics & SFP+ DAC Twinax Cables

1000BASE-T SFP modules are available on the market as soon as the certification of Gigabit Ethernet network. However, 10GBASE-T SFP+ modules, owing to the technology limit, have not been supplied by vendors to support 10G copper networks. Instead, IT managers tend to use the cost-effective SFP+ direct attach cables (DAC) for short-reach 10G applications. Today, here comes a big news—vendors like HPE, Prolab, and FS.COM begin to offer 10GBASE-T SFP+ transceiver modules. Do you feel curious about them? This article will unveil the mysterious point of the 10G copper transceivers, and make a detailed comparison with SFP+ fiber modules and DAC twinax cables.
10GBASE-T SFP+ Transceiver Modules
10GBASE-T SFP+ transceiver modules are designed to meet the requirement of 10G longer-reach applications. Compared with SFP+ twinax copper cables (maximum distance is 10m), SFP+ 10GBASE-T transceiver modules operate over Cat6a/Cat7 with a link length of up to 30m. Seen from the below image, SFP+ 10GBASE-T transceiver terminates with a RJ45 connectors, which can be directly used in the RJ45 ports of 10G switches and NIC cards. What’s more, 10GBASE-T SFP+ module is announced to have lower power consumption (2.5W) than SFP+ Twinax DAC cables (4-8W).
Figure 1 shows how to plug a Cat6 cables in a 10GbE SFP+ module.
SFP+ 10GBASE-T Module Vs. SFP+ SR/LR Transceivers
In order to have a better understanding of the 10G copper modules, let’s compare the SFP+ 10GBASE-T modules with SFP+ SR/LR Transceivers and SFP+ DAC Twinax cables.
Both of the SFP+ copper and fiber modules are hot-pluggable with a managed soft-start and are interoperable with any SFP+ cage and connector system. However, they have total different performance when plugging into the 10G switches. SFP+ 10GBASE-T module uses the Cat6a cables for a link length of 30 m over RJ45 connectors. SFP+ SR operates over OM3 cables with a distance of 300m over LC connectors. While SFP+ LR optics utilizes the OS2 LC duplex cables for a distance of 10 km.
Figure 2 shows the SFP+ 10GBASE-T Module (left) and SFP+ SR Transceivers (right).
Note that 10G SFP+ transceivers are nowadays much cheaper than the newly released 10G copper module. For your reference, at FS.COM, Cisco SFP-10G-SR is offered at $16, Cisco stable SFP-10G-LR is &34. While Cisco SFP-10G-T is $380.
SFP+ 10GBASE-T Module Vs. SFP+ DAC Twinax Cabling
Whether to use SFP+ 10GBASE-T module and Cat6a cables or directly use the SFP+ DAC twinax cables for 10G short-reach application, it depends on your own network infrastructure.
  • Linking Distance and Power Consumption
As noted before, the maximum linking distance of SFP+ 10GBASE-T module is 30m, while the SFP+ DAC twinax cable is 10m. Furthermore, SFP+ 10GBASE-T module have reduced the power consumption of 10G copper modules, which is a great news for the heavy-loaded 10G data center networks.
  • Costs
For 10G intra-rack connection, SFP+ DAC twinax cables obviously cost lower than SFP+ 10GBASE-T copper modules and cat6a cables do. And you should also count the expenditure of 10G switches and NIC cards. 10G switches that can support 10G RJ45 ports are not available nowadays.
  • Reliability
Compatible SFP+ Twinax cables have been used for years in 10G networks. So they are quite reliable. As for the SFP+ copper modules, RJ45 interface is rock solid. But many professionals said that technically it could work, but it is not supported for most of the switches. Thus, it is not popular nowadays.
Customers are very happy to see that there are new products kept coming out to keep in pace with the ever-increasing technology. SFP+ 10GBASE-T copper transceiver is introduced to have a better interoperability between existing fiber switches and 10G copper ports. Although there are still some unsolved problems of SFP+ 10GBASE-T transceiver module, we believe they will be solved in the near future.

Friday, April 14, 2017

How to Choose Fiber Optics for Mellanox ConnectX Ethernet Adapter Cards?

Mellanox ConnectX Ethernet adapter card provides high-performance networking technologies by utilizing IBTA RoCE technology, delivering efficient RDMA services and scaling in ConnectX-3, 4, 5, 6 EN 10/25/40/50/56/100/200GbE connection. The Mellanox ConnectX EN Ethernet card supports a full suite of software drivers like Microsoft Windows (including Windows 10), Linux distributions, VMware and Citrix XenServer. ConnectX Ethernet adapter card comes in several types for 10/25/40/50/56/100/200GbE network, such as ConnectX-3 EN, ConnectX-3 Pro EN, ConnectX-3 Pro EN 10GBASE-T, ConnectX-4, ConnectX-4 Lx EN, ConnectX-5 EN, ConnectX-6 EN adapter cards. In this article, we present an in-depth network-level performance evaluation of the Mellanox ConnectX Ethernet adapter cards and the supported fiber optic cabling.
Mellanox ConnectX Ethernet Adapter Card
Network Interface Card (NIC), also known as Network Interface Controller, Network Adapter, LAN Adapter or Physical Network Interface. All Mellanox 10/25/40/50/100/200 Gigabit Ethernet adapters deliver high-bandwidth and industry-leading Ethernet connectivity in enterprise data centers, high-performance computing, and embedded environments. From ConnectX-2 to ConnectX-6, Mellanox keep upgrading their Ethernet adapter cards to meet customers requirement.
Connectx-6 EN
ConnectX-6 EN—200Gb/s Adapter Card
ConnectX-6 EN 200Gb/s Adapter Card, launched last year, was the world-first 200Gb/s Ethernet network adapter card for Ethernet connectivity, sub-600 ns latency and 200 million messages per second. ConnectX-6 EN, seen in the image, provides two ports of 200Gb/s for Ethernet connectivity. As the first adapter to deliver 200Gb/s throughput, ConnectX-6 is the perfect solution to provide machine learning applications with the levels of performance and scalability that they require.
ConnectX-5 EN—Adapter Supporting 100Gb/s EthernetConnectX-5
ConnectX-5 just as the image shows, supports two ports of 100Gb/s Ethernet connectivity, sub-700 nanosecond latency, and very high message rate, plus PCIe switch and NVMe over Fabric offloads, providing the highest performance and most flexible solution for the most demanding applications and markets.
Table 1 presents the detailed information about Mellanox ConnectX-5 EN Ethernet Adapter Cards
Ordering Part No.DescriptionSpeedPortsConnectorsDimensions w/o Bracket
MCX515A-CCAT100GbE single-port QSFP28, PCIe3.0 x16, tall bracket, ROHS R6100GbE1QSFP2814.2cm x 6.9cm (Low Profile)
MCX516A-CCAT100GbE dual-port QSFP28, PCIe3.0 x16, tall bracket, ROHS R6100GbE2QSFP2814.2cm x 6.9cm (Low Profile)
MCX516A-CDAT100GbE dual-port QSFP28, PCIe4.0 x16, tall bracket, ROHS R6100GbE2QSFP2814.2cm x 6.9cm (Low Profile)
ConnectX-4 EN—Adapter Supporting 10G/40G/100Gb/s
ConnectX-4 LX ENConnectX-4 adapter cards have three different types: ConnectX-4 Lx EN Programmable Adapter Card, ConnectX-4 EN, ConnectX-4 Lx EN. ConnectX-4 Lx EN Programmable Adapter Card is listed in the right image. ConnectX-4 EN network is the single or dual port 100 Gigabit Ethernet adapter cards. ConnectX-4 Lx enables data centers to migrate from 10G to 25G and from 40G to 50G speeds at similar power consumption, cost, and infrastructure needs. If you are into this NIC card, you'd better look through their difference.
ConnectX-3 Pro EN—10/40/56 Gigabit Ethernet Network Interface Cards
ConnectX-3 Gigabit Ethernet interface card is one of the mostly used NIC cards nowadays. This kind of NIC card can support 10/40/56Gb/s Ethernet connectivitConnectX®-3 Pro Programmable Adapter Cardsy with hardware offload engines. The long-term goal at Mellanox ConnectX Gigabit Ethernet adapter card is to allow customers to wire once and switch protocols on the server and switch as required by workloads. Mellanox can presumably charge a premium for such capability, and ConnectX-3 silicon allows Mellanox to create fixed adapters and switches at specific speeds to target specific customer needs and lower price points, too. The image on the right display the ConnectX-3 Pro Programmable Adapter Cards.
For detailed information about ConnectX-3 Pro EN adapter cards, please see the Table 2.
Ordering Part No.DescriptionDimensions w/o Bracket
ConnectX-3 Pro EN Adapter Cards  
MCX311A-XCATSingle 10GbE SFP+10.2cm x 5.4cm
MCX312A-XCBTDual 10GbE SFP+14.2cm x 6.9cm
MCX313A-BCBTSingle 40/56GbE QSFP14.2cm x 5.2cm
MCX314A-BCBTDual 40/56GbE QSFP14.2cm x 6.9cm
ConnectX-2—Supporting 10G Ethernet Switches
ConnectX-2 Gigabit Ethernet Cards
Mellanox ConnectX-2 EN cards are the older cards for Ethernet only. That means that they will not work in Infiniband networks. In fact, there are still a few examples of OSes without ConnectX-2 support. Prime examples are FreeBSD 9.3 based FreeNAS and NAS4Free versions which did not have built-in support for the cards. The bottom line is that in terms of compatibility, one does need to verify these cards will work.
Many customers do use these in their Windows 10 home workstation for a 10Gb SFP+ back-haul network. Speeds are reliable and excellent. Nowadays, Mellanox does not supply this card, but ebay and Amazon do provide ConnectX-2 cards under $19.
How to Choose the Cables and Optical Modules for ConnectX-3 Ethernet Adapter Cards?
According to Mellanox, ConnectX-3 10G/40G/56G Ethernet adapter cards are interoperable with 10/40 Gb Ethernet switches. Passive copper cables with ESD protection are supported in this NIC card. ConnectX-3 cards can support up to 56Gb/s that can accommodate several fiber cables and optical transceiver types. Take the MCX313A-BCBT as an example, it has single 40GbE QSFP+ port. QSFP+ optical transceivers and DAC cables are feasible in this Ethernet Adapter Card. For the 10G SFP+ to 40G QSFP+ migration, Mellanox QSA (QSFP+ to SFP+) modules are required.
QSA Module
A previous article QSFP+ to SFP+ Adapter (QSA) Module Vs. QSFP+ to SFP+ Breakout Cable provides the detailed information about how to use the QSA module.
DAC Twinax or 10GBASE-T Copper Cable For ConnectX-2 NIC Cards
Mellanox ConnectX EN Gigabit Ethernet Cards can support up to 200Gbps data rate. Each ConnectX adapter card, as mentioned above, supports optical transceivers and modules applied for 10G/25G/40G/100G Ethernet network. ConnectX-2 EN Ethernet card, for example, can be used for 10GbE networks. Except the expensive SFP+ optical transceivers, SFP+ DAC Twinax and 10GBASE-T copper cables are the commonly used  transmission media for 10G data center inter-rack and TOR switching. So how to choose between them?
DAC Twinax Cable
DAC SFP+ Twinax cables integrates SFP+ modules and Twinax cables on the same conduit. It uses the SFP+ optical transceiver modules as connectors (not the real transceiver) on both ends so as to provide a cost-effective and low-power consumption solution for data center interconnection. 10G DAC Twinax cables can be divided into two types: active DAC twinax and passive DAC cables. For distances >5m and <10m, pickup the active version. Otherwise passive direct attach copper cables should be fine.
SFP+ DAC Twinax cables in NiC
Fiberstore is one of the best vendors for DAC and other fiber optics. Their packaging and after-sale support for even the smallest orders is excellent. For connecting two ConnectX-2 cards together, you can get one of the SFP+ copper cables.
Ethernet Network Cables
Ethernet Network Cables like Cat5, Cat5e, Cat6 do look alike from the outside and they all use the same connectors as well. However, they have significant differences on the inside. One simple method is that you can find out the type of cable you have by looking at the text printed on the side of the cable. There are other cables possible (like Cat7 and Cat8 cables) but Cat5, Cat5e, Cat6 cables are the most common now.
  • CAT5
Category 5 cabling is an older type of network cabling compared with Cat5e and Cat6 cables. Cat5 cables support transfer speeds of 10/100 Mbit/s (Fast Ethernet). Nowadays, many installers treat it as old and obsolete and try not to use it. For those who buy cat5 cables,  they tend to use in older devices such as an older router or switch.
Category 5 enhanced (Cat5e) cables currently are the most commonly used Ethernet network cables owing to its enhanced transmission data rate and reduced crosstalk. Cat5e cabling supports 1000 Mbit/s and cust down on external and internal crosstalk. It basically means that Cat5e is better at keeping signals on different circuits or channels from interfering with each other.
  • CAT6
Category 6 cabling (Cat6) supports 10 Gbit/s speeds with additional crosstalk improvements. If you're purchasing a new cable for future proofing,  it should really be CAT6 or above. That doesn't imply Cat6 cables protect your network from the future or anything, it just means it will keep it up to date for longer when the next products comes along.
Note : Your network speed depends on  the slowest part of your setup. If you want to deploy gigabit ports, gigabit routers, switches,  then please make sure you cabling also supports those speeds as well.
Mellanox is the world-class vendor for selling multi-protocol chips and adapter cards for servers. It provides a wide range of high-speed interconnection solutions including Gigabit Ethernet cards and InfiniBand adapter cards. The above mentioned ConnectX Gigabit Ethernet cards can not be used in InfiniBand networks. ConnectX Mellanox Gigabit Ethernet cards are the cost-effective devices for your network applications. If you do have the Mellanox NIC cards, you can buy the cost-effective DAC and optical transceiver modules from FS.COM to further reduce the total cost of your budget.

Thursday, April 6, 2017

How to Choose SFP Transceiver Modules for UniFi US-8-150W Switch?

Ubiquiti Networks Unifi switch is part of the UniFi line of products that delivers robust performance and intelligent switching for the growing networks. Many customers nowadays hold great feedback about the cost-effective UniFi switches. US-8-150W, as one of the most popular UniFi switches, offers eight Gigabit RJ45 ports and 2 SFP ports that can support up to 1Gbps. So, how to choose the suitable optics for UniFi US-8-150W switch? This article will provide detailed information about this UniFi switch and the appropriate SFP modules for US-8-150W switch (seen in the below image).
US-8-150W port info
Understanding UniFi US-8-150W Switches
Ubiquiti Networks UniFi switches can be divided into two types: managed Gigabit switches and managed PoE+ Gigabit Switches. In short, POE switches and non-POE switches. Each UniFi switch type is fully managed Gigabit switches with RJ45 and SFP+/SFP ports, offering non-blocking throughout switching performance.
US-8-150W UniFi switch features 8 RJ45 ports and 2 SFP ports which offer convenient different power output options, auto-sensing IEEE 802.3af/at POE/POE + performance. It is a bit larger than a standard home switch. So, would-be buyers who are looking to rack mount need to buy a extra shelf and stick it there. The table below provides the clearer information about this switch.
port info of US-8-150W
Note that US-8-150W is only US $199.
How to Select SFP Modules for UniFi US-8-150W Switches?
According to Ubiquiti Networks, both their original and third party SFP transceiver modules from other vendors can be used on UniFi switches.
Ubiquiti Networks UF-MM-1G & UF-SM-1G-S
Ubiquiti Networks only offer two type of SFPs—UF-MM-1G and UF-SM-1G-S. UF-MM-1G SFP module supports a data rate of 1.25 Gbps over multimode fibers. It uses the 850nm as the Tx and Rx wavelength with a supporting distance of 550m.
UF-SM-1G-S is a single-mode SFP available in both blue (1310nm) and yellow (1550nm) color code. Unlike the 1000BASE-LX SFP optics with LC single-mode fibers that can operate up to 5 km, UF-SM-1G-S only supports a link limit of 3 km.
Ubnt SFP and SFP+ modules
Figure 3 presents all the existing fiber optic transceivers (SFP and SFP+) from Ubiquiti Networks. UF-SM-1G-S is in the middle of the image.
3rd Party SFPs for US-8-150W Switch
Besides the above two SFP types, there are several more Gigabit Ethernet standards for SFP transceiver modules—1000BASE-T, 1000BASE-SX, 1000Base-LX/LH, 1000BASE-ZX, 1000BASE-BX-D, 1000BASE-BX-U and 1000BASE-EX, which are compatible with the UniFi switches. According to the Ubiquiti Networks, Fiberstore (FS.COM) SFPs are tested to be fully compliant with UniFi switches. For more information about these compatible SFPs, please check on the following list.
FS.COM compatible SFPs for UniFi switches
From the table, we know that several Cisco SFP modules and HPE SFP transceivers are working on the UniFi Switches. In our test center, we have tested the GLC-T compatibility and Cisco GLC-SX-MM compatible issues.
More Information About UniFi Switches
Besides the hot selling US-8-150W switches, there are a series of UniFi switches such as US-8-60W, US-16-XG, US-48, US-8, US-24, US-48-750W, US-48-500W, US-24-250W, US-24-500W. Whether you use which one, FS.COM SFPs in the above table are tested to be fully compatible with UniFi switches. For such a low price of the 3rd party SFP transceiver modules, it is advisable for you to purchase more optics for backup.
The UniFi US-8-150W switches are designed to be part of the complete line of small business or home networking and wireless communication products that work together as part of proven, fully integrated, easy-to-use small business solution. UniFi switches support several types of Gigabit Ethernet SFP optical transceivers. All these high-quality fiber optic transceivers can be found on FS.COM for great prices. We also make sure to provide its customers same day shipping. Some of the items can be directly shipped from Seattle warehouse.

Tuesday, March 28, 2017

QSFP28 Transceiver With MTP or LC Duplex Cables

Nowadays, QSFP28 transceiver is the mainstream of 100G optics market. So as to meet different 100G deployment needs, QSFP28 modules usually come in several standards such as QSFP28 PSM4, QSFP28 CWDM4, IR4, SR4 and LR4, etc . Compared with CXP and CFP 100G optical transceivers, QSFP28 optics are the smallest form factors that provide a high-density and high-speed solution for 100G networks. A previous article provide detailed information about what distance QSFP28 optics can support for 100GbE deployment. Today’s article will introduce 100G QSFP28 cabling solutions by the use of MTP/MPO cables and duplex LC cables.
QSFP28 modules offer four channels of high-speed differential signals with each data rates up to 28Gbps, and will meet 100 Gbps (4x25 Gbps) in the end. QSFP28 transceiver is available in 100GBASE-SR4, 100GBASE-LR4, PSM4 and CWDM4 standards. The interface of 100G QSFP28 transceivers includes MTP/MPO and LC duplex cables.
Cabling Solutions of QSFP28 MPO
100G QSFP28 100GBASE-SR4 and 100GBASE-PSM4 transceiver modules are the 100G transceiver modules that need to be connected with MTP/MPO interfaces. 100GBASE-SR4 QSFP28 complies with QSFP28 MSA and IEEE 802.3bm specifications. It can support a link length of 100 m. 100G PSM4 specification defines requirements for a point-to-point 100 Gbps link over eight single-mode fibers with a supporting distance of 500 m. Figure 1 shows the QSFP28 SR4 with MTP connector.
MTP/MPO fiber cable is commonly used to connect QSFP+ or QSFP28 transceivers with single-mode and multimode categories, which is specially designed for 40G/100G high-density data center cabling system. MTP/MPO fiber cables are usually terminated with 12-fiber, 24-fiber, 48-fiber MTP/MPO connectors. Single-mode MTP/MPO cable is able to carry signal over long distance while multimode is for short-reach application. QSFP28 mpo
  • 100GBASE-SR4 QSFP28 over Multimode MTP cable
100GBASE-SR4 QSFP28 works over a 12-fiber multimode MTP/MPO patch cable (four not used) for short-reach 100G connection. Figure 2 shows the direct connection between 100GBASE-SR4 QSFP28 modules by the use of Female to Female 12-Fibers OM4 trunk Cable.
  • 100GBASE-PSM4 QSFP28 Over Single-mode MTP Cable
Similar to 100GBASE-SR4 QSFP28, 100GBASE-PSM4 QSFP28 also requires 12-fiber MTP/MPO patch cable. But QSFP28 PSM4 matches with single-mode MTP/MPO fiber patch cable instead of the multimode MTP/MPO .patch cables.
100G QSFP28 Optics With Single-mode Duplex LC Interface
100GBASE-CWDM4 QSFP28 and 100GBASE-LR4 QSFP28 are the 100G modules designed for long-reach applications terminated with duplex LC interface. 100GBASE-CWDM4 QSFP28, as the name implies, it is a full duplex module with the use of CWDM technologies. It integrates transmit and receive path in one module. 4 lanes of optical signals (25 Gbps per lane) firstly are multiplexed into an LC duplex interfaces on the transmitting side. Then data streams are de-multiplexed by an integrated optical de-multiplexer and transformed to an electrical CAUI-4 output driver. QSFP28 CWDM4 can support a distance of 2 km over single-mode fibers. Figure 3 shows the interconnection of 100G QSFP28 LR4 module connected with MTP to LC breakout and MTP cassette to achieve a total 400G data rate transmission.
Cisco QSFP28 LR4 optics
100GBASE-LR4 QSFP28 is a 4x25Gbps transceiver module that can support link lengths up to 10 km. 100GBASE-LR4 QSFP28 also operates over single-mode fiber cable with duplex LC connector by multiplexing and de-multiplexing optical signals. Common single-mode duplex LC patch cable can meet the cabling requirement of these two transceivers. For high density data center, HD LC fiber patch cable is highly recommended as the push-pull tab is easy to remove and can save space.
With compact size and low power consumption, 100G QSFP28 modules are becoming the most popular 100G optics on the market. QSFP28 SR4 and QSFP28 PSM4 transceivers terminate with MTP/MPO interfaces, while QSFP28 LR4 and CWDM4 modules connect with LC duplex cables. Besides QSFP28 transceivers, there are QSFP28 DAC and AOC cable available for short-reach 100G connections.